
Coordinated Collaborative Testing of Shared
Software Components

Teng Long∗, Ilchul Yoon†, Adam Porter∗, Atif Memon∗ and Alan Sussman∗

∗Department of Computer Science, University of Maryland, College Park, USA
†Department of Computer Science, State University of New York, Incheon, South Korea

{tlong,atif,aporter,als}@cs.umd.edu, icyoon@sunykorea.ac.kr

Abstract—Software developers commonly build their software
systems by reusing other components developed and maintained
by third-party developer groups. As the components evolve
over time, new end-user machine configurations that contain
new component versions will be added continuously for the
potential user base. Therefore developers must test whether their
components function correctly in the new configurations to ensure
the quality of the overall systems. This would be achievable
if developers could provision the configurations in house and
conduct regression testing over the configurations. However, this
is often very time-consuming and also there can be redundancy in
test effort between developers when a common set of components
is reused for providing the functionality of the systems.

In this paper, we present a coordinated collaborative regression
testing process for multiple developer groups. It involves a
scheduling method for distributing test effort across the groups
at component updates, with the objectives of reducing test redun-
dancy between the groups and also shortening the time window
in which compatibility faults are exposed to user community.
The process is implemented on Conch, a collaborative test data
repository and services we developed in our previous work. Conch
has been modified to function as the test process coordinator,
as well as the shared repository of test data. Our experiments
over the 1.5-year evolution history of eleven components in the
Ubuntu developer community show that developers can quickly
discover compatibility faults by applying the coordinated process.
Moreover, total testing time is comparable to the scenario where
the developers conduct regression testing only at updates of their
own components.

I. INTRODUCTION

Software developers commonly build their software sys-
tems by reusing components developed and maintained by
third-party developer groups. As these components evolve
independently during the life cycle of the systems, new ver-
sions are continuously released, and new end-user machine
configurations that contain the new versions are added for
the potential user base. If developers use Agile or DevOps
methodologies [1], [2], which is prevalent in the software
development community, the version (or build) release cycle
can be very short, and the number of configurations can
increase rapidly.

At each new component version release, developers of
other components (including top-level systems) must ensure
that their components build and function correctly over the
new configurations, potentially discovering cross-component

compatibility faults, because any unidentified compatibility
faults that make their way out into user community could
make end-users waste time deploying the component onto their
desired machine configurations. The importance of quickly
discovering cross-component compatibility faults has also
been emphasized by other researchers. For example, Artho et
al. [3], [4] claimed that determining cross-component conflicts
is important to assure the quality of package-based distribu-
tions, and categorized various cross-component conflicts found
in the bug tracking systems of the Debian and Red Hat Linux
distributions.

The sheer number of feasible configurations and the lack
of systematic and automated cross-component compatibility
testing with adequate coverage are the major reasons that
cross-component compatibility bugs are not captured during
the in-house testing process, but instead by frustrated end-users
after version releases. In our previous work [5], [6], we showed
that developers can discover cross-component compatibility
faults and shorten the time during which the faults are exposed
to the user community by performing compatibility testing
over a set of carefully selected configurations, continuously
as components evolve. However, it is still very costly for an
individual developer group to conduct testing over all feasible
configurations, because as previously noted the number of
configurations will continue to increase rapidly as components
contained in the configurations evolve. In addition, performing
compatibility testing individually and in isolation by each
developer group can reduce the value of testing by wasting
resources unnecessarily. We have observed in earlier work [7],
[8] that significant amounts of testing effort are redundant
across developer groups, when there are dependency relation-
ships between components developed by the groups and also
when a set of identical components are reused for developing
the components – i.e., when the components are shared by
the groups. A large amount of test effort could be saved if
the groups collaborate by sharing both test data via a shared
repository, and cross-component compatibility faults can then
be more quickly discovered.

However, the collaborative test process in our previous
work was designed to work in an ad-hoc, greedy fashion
without careful coordination between developer groups. At
every component update, multiple groups may start to conduct

regression testing if their components are affected by the
update. This is a rational choice for the groups because the
configurations that contain the new component version are
newly introduced and the groups want to minimize the time
in which potential compatibility faults are exposed to user
community. But, on the other hand, the strategy increases
redundancy in test effort spent by the groups, especially if
there are inter-component dependencies or if the component
is shared by multiple groups.

In this paper, we present a coordinated collaborative regres-
sion testing process for multiple developer groups, with the
objectives of reducing the overall test redundancy across the
groups as well as minimizing the time in which compatibility
faults are exposed to the user community. The process involves
a test scheduling and notification mechanism across developer
groups, so that each group is made aware of the configurations
under test by other groups, enabling the groups to avoid
performing redundant tests. We apply this process to a set of
software systems with shared components in an Ubuntu dis-
tribution, emulate the application of the process over the 1.5-
year history of the component development, and evaluate the
cost and effectiveness of the process. Our experiments show
that the coordinated collaborative testing process can greatly
reduce test redundancy and can discover cross-component
compatibility faults quickly. For example, our process was
able to discover a compatibility fault related to the OpenSSL
library earlier than it was discovered by the developers, and the
fault had been classified as critical by the community. We also
found configuration-specific issues heavily discussed in online
forums, but were not well documented by the developers.

The testing process is realized in an automated tool by
extending Conch, a set of data sharing services we previously
developed [7], [9]. Conch originally provided a repository
that stored various test artifacts, including functional test
results of components under different configurations, virtual
machine images that realize configurations, and line/branch
code coverage information obtained by running component
test suites. Testers pulled data from Conch and reused the
data to improve local testing. In this work, Conch has been
modified to perform the role of the test coordinator for the
new test process. When an updated component version is
released, Conch analyzes the code coverage information for all
components that rely on the updated component and pushes
notifications to the developers of the components affected
by the update. Conch also informs the developers when to
locally start regression testing, so that they can better leverage
test data created by others developer groups. With Conch,
testers performing regression testing continuously but isolated
from other testers can test new configurations more promptly
without introducing redundant effort across testers.

This paper describes several contributions, including:
1) a coordinated collaborative testing process for minimizing

both fault exposure time and test redundancy across
developer groups;

2) an automated tool to execute the coordinated collabora-
tive testing process; and

3) empirical evaluation of the testing process over a set of
real-world components in a large software community.

The rest of this paper is organized as follows. Section II
provides background and context from our earlier work. In
Section III, we describe the testing process designed to coordi-
nate the collaborative testing process across multiple developer
groups, and present experimental results in Section IV. Related
work is described in Section V and we conclude in Section VI.

II. BACKGROUND

In this section, we first describe our prior work on modeling
component-based software systems and their configurations,
and then we describe overlaps and synergies that can be ob-
tained through collaborative testing across multiple developer
groups. After that, we outline the shared test data repository we
have previously developed for enabling collaborative testing.
At last, we introduce regression cofigurations, which are the
new configurations that components need to be tested on when
their provider components are updated.

A. Modeling Component-based Systems

We represent component-based software systems with an
Annotated Component Dependency Model(ACDM) [5]. An
ACDM contains two parts: (1) a directed acyclic graph called
the Component Dependency Graph (CDG) and a set of Anno-
tations. In the example model in Figure 1, each node in the
CDG represents a unique component, and inter-component de-
pendencies are specified by connecting nodes with AND(*) or
XOR(+) relationships. Component A depends on component
D and either one of B or C. In this model, a dependency means
that one component requires another component at build-time,
runtime, or both. We call a component that depends on others
a user component, and a component on which other com-
ponents depend a provider component. Annotations include
version identifiers for components, and constraints between
different components and component versions, written in first-
order logic.

Version Annotations

Constraints

 (ver(C) == C2) (ver(E) E3)

Component Versions

A A1

B B1, B2, B3

C C1, C2

D D1, D2, D3

E E1, E2, E3, E4

F F1, F2, F3, F4, F5

G G1

*

+ D

B C

*

E

*

F

*

G

A

Fig. 1. An Example System Model

The example above is for a single software system (the com-
ponent A). When multiple systems share a set of components,
we can create an integrated CDG with overlapping subgraphs.
For example, in Figure 2, Serf, Flood, Subversion

and Managelogs depend on the APR component. Each
developer group of a top-level component tests configurations
where each contains a specific set of component versions,
including the ones in the shared sub-graph rooted at the APR
node. That is, the components contained in each configuration
are built and the behavior of the components are tested before
building and testing the top-level component, which is the
software system developed by the group.

Flood

*

*

*

Managelogs

*

*

Serf

*

*

Subvers ion

*

Neon BerkeleyDB *

APR-Util

*

*

APROpenss l

SQLite

Zlib

GNU Compiler

Ubuntu

Fig. 2. Systems with Common Components

B. Synergies from Collaborative Testing

When multiple systems share a set of components, efforts
to test partial configurations can be performed by multiple
developer groups, introducing redundancy. For example, in
Example 2, all top-level component developer groups have
to build and test configurations that contain the components
in the shared sub-graph rooted at the APR node. In [8], we
studied the overlaps and synergies achievable by sharing test
artifacts (e.g., test results, logs, and configurations realized in
virtual machine images) across developer groups.

More specifically, we measured the line/branch coverage of
a shared component and the spectrum of parameter values used
to invoke methods of the component, when the component
is executed by running its test suite or by executing the
test suites of its user components [8]. The results showed
that the test cases designed and run by component users
can be individually less comprehensive than those by shared
component developers, but in some cases can exhibit new
behaviors not covered by the original provider’s test cases.

In a followup study [7], we collected the 1-year update
history of 5 user components in a Debian Linux distribution
and also the components shared by the user components, and
then replayed the regression testing of the user components. At
every component update, we generated configurations that had
to be newly tested or retested, and estimated the time required
for testing the configurations by the user component developer
groups. The experiment results showed that a large amount
of build and functional test efforts are redundant across the
groups, because all user component developers had to prepare

Fig. 3. The Conch Data Sharing Repository

(in virtual machine formats) identical working configurations
on which their components are deployed. Roughly, 11% per-
cent of the preparation time could be saved by sharing test
results, and up to 77% of the time could be saved by sharing
partially prepared configurations realized in virtual machine
images.

C. Repository for Sharing Test Artifacts

To facilitate sharing test artifacts among developers, we have
designed and implemented a Web-service based data reposi-
tory called Conch [7]. The structure of Conch is illustrated
in Figure 3. The repository provides Web services that can
handle requests for accessing previously executed test results
via WSDL [10] and the SOAP [11] protocol. Developers can
write tools or plug-ins that enable their automated test systems
to access the data stored in the repository.

Conch shares (1) component dependency information, (2)
component build and functional test results, (3) pre-built
configurations realized in virtual machine images, and (4) code
coverage of all provider components when they are executed
by running the test suite of each user component. Developers
can use the information to analyze the access patterns of
user components, or to preclude configurations that cannot
be used, due to one or more build or functional test failures
of components contained in the configurations. They can also
reuse pre-built configurations to save configuration preparation
time. Since the size of full virtual machine images is very
large, we developed a tool called Environment Differencing
Engine(Ede) [9]. Ede supports efficient system environment
differencing for creating incremental representations of system
state, and also supports restoring a system state from an
incremental representation.

D. Testing Regression Configurations

As components in a software system evolve, newer versions
of the components become available. If a new version of
a provider component in a CDG is released, it introduces
new configurations that have to be tested by affected user
component developers. For example, in Figure 1, assume that
only one version of each component is available initially; A1

for the component A, B1 for the component B, and so on.
If the developer of the component D releases a new version
D2, {B1,D2,E1,F1,G1} and {C1,D2,E1,F1,G1} are new
configurations on which the developers of the component A
need to test. We call these configurations regression config-
urations.

Given a CDG and an ordered list of all component updates
U, the total number of regression configurations for each
component developer can be computed. Figure 4 shows an
example update history of the components in Figure 1 and
the regression configurations introduced for A’s developers
after each update. For the given update history, a total of 21
regression configurations are introduced.

Original Versions: A1, B1, C1, D1, E1, F1, G1

Update Order: B2, C2, D2, E2, F2, F3, B3, D3,
 E3, F4, E4, F5

Regression Configurations:

A1, B2, D1, E1, F1, G1

A1, C2, D1, E1, F1, G1

A1, B2, D2, E1, F1, G1

A1, C2, D2, E1, F1, G1

A1, B2, D2, E2, F1, G1

A1, C2, D2, E2, F1, G1

B2

C2

D2

D2

E2

E2

...

Fig. 4. Example Regression Configurations of A

After a component update, developers of every user com-
ponent must ensure that the user component can be built
without any errors in the new regression configurations, and
also the test results obtained by running the user component
test cases relevant to the update should remain identical to
the ones obtained before the update. If there are any build or
test failures, then compatibility faults have been introduced
between the user component and the updated component.
This activity has to be repeatedly executed over all regression
configurations, and in this paper it is referred to as regression
testing. In the next section, we present a method to better
coordinate regression testing activities performed by multiple
developer groups when a common set of components is shared
by the groups.

III. COORDINATED COLLABORATIVE TESTING PROCESS

This section introduces a coordinated collaborative regres-
sion testing process whose objectives are to minimize the time
during which compatibility faults introduced by component
updates are exposed to the user community, as well as to
minimize redundant test effort between developer groups.
We first outline notification-based test coordination, and then
describe the detailed decision algorithm to distribute testing
tasks to different developer groups, based on the availability,
historical credibility and performance of the developer groups.

A. Notification Scheme for Coordinated Collaborative Testing
The Conch test data sharing repository not only maintains

the dependency relationships between components, but also

monitors the source code repository of the components to
track their update releases [7]. For the purpose of discovering
compatibility faults as soon as possible, whenever Conch sees
a new version of a component, the developer groups of all user
components of the updated component are notified, and they
immediately start testing the new regression configurations.
But because no group has yet tested or shared regression
configurations containing the new component version, the
developer groups will not find reusable test results or con-
figurations in Conch. Therefore, multiple groups will start
testing identical configurations locally because they still need
to minimize compatibility fault exposure time. As a result, the
groups will end up performing redundant tests. That is, ad-hoc
collaborative testing without proper coordination will waste
testing time and testing resources of the developer groups.

To avoid the redundancy yet still achieve efficient regression
testing, we enhance the notification scheme used in our previ-
ous work to support coordination across multiple developer
groups. This is different from ad-hoc collaborative testing
in two aspects. First, for a new component version release,
Conch notifies the affected user component developer groups
to start testing the shared portion of regression configurations,
in an order determined based on the availability, past test
performance, and the failure rate of the groups. Second, if a set
of new regression configurations that contain the new version
is assigned to a developer group and is currently being tested,
Conch monitors the test status, and notify other groups of the
status, if they request it. The groups can wait for the result to
become available, or start testing the configurations locally. If
they choose to wait, Conch will notify them when the result is
ready. This scheme allows developer groups to conduct testing
independently, and make their own decisions about whether or
not to perform redundant tests.

B. Strategy for Coordinated Collaboration

When a component is shared by multiple developer groups
and a new version of the component is released, sets of
regression configurations defined for its user components have
to be tested by the groups. Because the component is shared,
there must be overlaps in the regression configuration sets, and
the overlaps – a set of partial configurations – must be tested
first. Conch selects one of the developer groups to test those
partial configurations without causing test redundancy, based
on the following factors:

• Availability: a binary value that indicates whether a
developer group can immediately start testing a set of
new regression configurations

• Performance: how fast a developer group can complete
testing on their testing resources

• Reliability: how likely a developer group can complete
assigned testing tasks

The performance factor of a developer group G is defined
as the ratio of the execution time required to run a redbench-
mark test suite using the testing resources of the group and the
time required to run the benchmarks on the testing resources at
the Conch repository, as shown in Equation 1. The benchmark

test suite is a representative test suite selected by the Conch
administrator, used solely to measure relative execution times
to run the test suite on different resources.

PF (G) =
TG

TConch
(1)

We next define the test failure rate of a developer group
G to quantitatively measure the reliability of the group. It is
defined as the ratio of the number of failed test suite executions
and the total number of test suite executions by the group.

TFR(G) =
FCG

TCG
(2)

In Equation 2, TCG is the total number of test suite
execution requests that have been assigned to the group G,
and FCG is the number of test suite execution requests that
failed to complete successfully. Reasons for failure to run a
test suite may include abnormal termination of the test suite
execution and failure to report test results back to Conch
(e.g., because the test developer resource crashes, or loses
its network connection), but does not refer to the success or
failure of individual test case executions.

Based on the performance factor and the failure rate of
a developer group G, we define the Expected Performance
Factor (EPF) of the group as:

EPF (G) =
PF (G)

(1− TFR(G))
(3)

The EPF value will be small when both the performance
factor value and the failure rate are small, and Conch prefers
to distribute testing workload to a group with the smallest EPF
value.

When a provider component is updated, we first determine
the user components for which functionality might be affected
by the updated provider component. Then we compute the
regression configurations for the user components and also
compute the overlaps between the configurations. The overlaps
are a set of partial regression configurations on which the
updated component has to be built and run without any faults.
A developer group selected by applying Algorithm 1, will then
be requested to build and test the updated component over the
partial configuration set.

Algorithm 1 first identifies the developer groups of direct
user components of the updated component C and eliminates
the groups that cannot start regression testing immediately.1

The candidate groups are sorted by the EPF values and then
the group with the smallest EPF value will be requested to
test C over the given regression configuration (Line 5). If the
group completes (or fails to complete) the test, the FR value
of the group will be updated accordingly. Developer groups
of other direct and indirect user components will defer their
local testing until the test result for C is shared via Conch.

1Developer groups of indirect user components are not considered because
they can reuse the results produced by a direct user component developer
group.

Algorithm 1: CoordinateTester(C, CDG, A, PFs, FRs)
Data:
C: updated provider component
CDG: component dependency graph
A: availability of groups
PFs: performance factor values of groups
FRs: failure rate values of groups

1 groups ← available direct user comp. developer groups ;
2 sort groups by EPF ;
3 while groups 6= ∅ do
4 group ← groups.getNext() ;
5 result ← assigntask(group, C) ;
6 update FR of the group ;
7 if result == Success then
8 update result in Conch ;
9 Conch notifies subscribers of C’s results ;

10 break ;
11 end
12 end

If other groups request the result from testing C over the
regression configuration while the test is under execution,
Conch simply notifies the groups that the result is not yet
available. The groups can choose to run the same test using
their resources, or instead wait for the result by subscribing to
the test in Conch, and then run other tasks. If the test execution
is completed, all groups interested in the test result will be
notified (line 7-11). Otherwise, the next group in the sorted
list of groups will be assigned to execute the test.

By applying the algorithm, our experiments will show that
Conch can coordinate multiple collaborating developer groups,
while minimizing both redundant test effort across the groups
and the exposure time of compatibility faults introduced by
component updates.

C. Regression Testing based on Cross-Component Coverage

We have presented a strategy to coordinate multiple devel-
oper groups, while avoiding redundant test effort. However,
in the end we are still running full test suites of all user
components that might be affected by the updated provider
component – i.e., if there are user-provider relationships be-
tween the components in a CDG. We showed in our previous
work [7] that developers can save test effort up to 70% by
selectively running regression test cases based on the mapping
between the individual test cases of user components and the
code coverage of provider components.

In the current work, coverage-based regression testing
is conducted at two different granularity levels. If Conch
maintains the code coverage mappings between each user
component test case and each provider component, only a
subset of the test cases that cover the updated regions of
the provider component must be run. If Conch maintains the
mappings between the test suite of a user component and each
provider component and if a provider component update is

relevant to one or more test cases of the user component, we
rerun the whole test suite at a provider component update.
The prior mapping enables more elimination of unnecessary
testing effort, however, it also generates much more overhead
with more frequent coverage collection. For this reason, we
adopt coverage-based selection on test suite level for our
implementation.

IV. EXPERIMENTS

In this section we evaluate the effectiveness and perfor-
mance of the coordinated collaborative testing process pre-
sented in Section III. We selected a set of subject components,
obtained and sampled their evolution history, emulated the
regression testing processes that would be performed by the
developer groups of the components, and evaluated the perfor-
mance and the effectiveness of our coordinated collaborative
testing approach versus other approaches.

A. Subject Components

We picked twelve subject components (i.e., 12 developer
groups) from the Ubuntu platform for our experiment. The
components and their dependency relationships are shown as
the CDG in Figure 5. We also obtained the update history
of these components over roughly a one and half year period
between October 2013 and March 2015. The subject com-
ponents fall into various categories, including an interpreter
(Python), an encryption library (OpenSSL), database systems
(SQLite, BerkeleyDB), system utilities (Bzip2, zlib), and a
GUI application (XBMC). Dependency relationships between
the subject components were manually determined and entered
into Conch. In this work, inter-component dependencies are
static. We considered three Ubuntu releases for the experi-
ments. Table I contains brief descriptions of the components
and the number of versions of each component.

The source code released by component developers is
included as-is in the Ubuntu distribution, but in many cases
the components are customized by Ubuntu developers to
address compatibility issues. The developers maintain and
update the code using version control systems like Bazaar [12]
or Subversion [13]. Figure 6 shows the 87 total component
versions released during the test period, ordered by day from
the start of the test period.

B. Testing Strategies

As previously discussed, developers are pressured to com-
plete testing their components with a limited amount of testing
time and resources, and such pressure drives developers to
conduct testing over only a sampled subset of configurations.

Among many different sampling strategies, one naive but
commonly used strategy is to run the test suite of a component
under development over a set of regression configurations of
the component, where each configuration contains the latest
version of all provider components. Developers of a compo-
nent then compute regression configurations and run its test
suite when they release a new version of their component. If

Ns3

*

*

LibXML2

*

Subversion

*

* BerkeleyDB

Xbmc

*

*

*

Python

OpenSSL

Bzip2

*

Zlib Tcl

*

Ubuntu

SQLite

Fig. 5. Subject Components for Continuous Collaborative Testing

TABLE I
SUBJECT COMPONENTS

Component Description Versions
Bzip2 high-quality, open-source data compressor 6
Zlib compression library 3
Tcl a dynamic programming language 6
Openssl open source toolkit for SSL/TLS 18
SQLite in-memory SQL database engine 15
Python object-oriented programming language 5
BerkeleyDB library for embedded database 4
LibXML2 XML C parser and toolkit of Gnome 10
Ns3 discrete-event network simulator 2
XBMC open source home theater software 2
Subversion version control system 26
Ubuntu operating system 3

 0 50 100 150 200 250 300 350 400 450 500

Days

Component Update History

Ubuntu

Bzip2

Zlib

Tcl

OpenSSL

SQLite

BerkeleyDB

Python

Xbmc

Ns3

Subversion

LibXML

Fig. 6. Subject Components Update History

we apply this strategy to the component update history in Fig-
ure 4, for example, the developers of the component B would
test B2 and B3 over the regression configurations {B2,E1,G1}
and {B3,E2,G1} respectively, and the developers of D would
test D2 over {D2,F1,G1}, when D2 is released. However, A1

would never be tested over the configurations that contain new
provider component versions (e.g., {A1,B2,D1,E1,F1,G1}),
because there is no update record of A – i.e., in this strategy,
the developers of A never monitor the changes in A’s provider
components and simply assume that A will function correctly
over the configurations.

The second strategy we consider is that developers of a
component constantly monitor the updates of all provider com-
ponents, and run the test suite of their components whenever
a new provider version is available. For this strategy, we
assume that developers test their components in an isolated
way without sharing any test results. We call this strategy
eager testing and this would be the practice when developers
want to perform very thorough and timely compatibility testing
over new provider components. If all developers adopt this
strategy, each component will be tested over all its regression
configurations, but the downside is that developers will end
up performing redundant tests, since different groups do not
coordinate their testing of overlapping components. In the
running example in Figure 4, the component A will be tested
over all 21 regression configurations with the eager testing
strategy, and therefore the developers of A can quickly notice
if a compatibility fault is introduced by including a specific
provider component version in a regression configuration.
However, the developers of B will also test B over all its
regression configurations. In total, 55 regression configurations
will be considered for testing by the developer groups, and
clearly there will be a significant amount of overlap in the
test effort expended by the groups.

The third strategy is ad-hoc collaborative testing. As
described in Section III-A, developers can aid each other by
sharing test data through the Conch repository. In this strategy,
developers always query Conch first to search for reusable
test data. We consider three variants of ad-hoc collaborative
testing. The first variant is to maximize the reuse of test data,
by serializing the work required for testing each regression
configuration between developer groups. The second variant
is to minimize fault exposure time by allowing all devel-
oper groups to start testing their regression configurations
immediately after each provider component update. In the last
variant, developers also apply the coverage-based test case
selection technique described in Section III-C, in addition to
the second variant. During the testing process, whenever a user
component test suite covers any of its provider components’
code, we update the code coverage mapping in Conch.

In our experiments, we collected the cumulative testing time
and the maximum fault exposure time to compare the strate-
gies above and the coordinated collaborative testing strategy
described in Section III-B.

C. Experimental Setup

Virtual machines (VMs) are used to install components
contained in regression configurations, and then execute their
test suites. Each VM is configured to have two virtual CPUs,
4GB of virtual memory, and 80GB of virtual disk space.
Ubuntu is used as the operating system and all VMs are hosted
on a private cloud cluster running OpenStack [14]. Default
test suites provided by the original component developers are
used to test the functionality of the installed components,
but we excluded a subset of the full BerkeleyDB test cases
because these test cases took too long (more than a week) to
finish. They are designed for stress testing instead of functional
testing, and including them will bias our experimental result
to a specific component. 2

To replay the component update history shown in Figure 6,
we first performed eager testing for the top-level components
in Figure 5. That is, we did all the test activities that must be
performed by the 12 developer groups, and measured the time
required to install components and run their test suites. The
results from test case execution are also recorded. The test
data acquired from eager testing is then reused to simulate the
tests for the other testing strategies.

For coverage-based test case selection, we also maintain the
coverage for each user/provider component pair. For example,
we collect the OpenSSL (the provider) code regions covered by
running the test suite of XBMC (the user). If no code region is
covered, we do not need to retest XBMC when a new OpenSSL
version is later released. The coverage mappings are updated
when a new version of XBMC or Ubuntu is released. Gcov, the
coverage collection tool of the GNU compiler collection 3,was
used to collect the coverage information.

The performance of computing resources at multiple de-
veloper sites are assumed to be heterogeneous. We used a
Gaussian distribution with mean value 1 to model the perfor-
mance factor distribution, and performed experiments using
5 distributions each with different standard deviation values
between 0.1 and 0.5 (See Table II). We also need to model
test failure rates for different developer groups. We assume
that a developer group that successfully completed executing
a test suite within a pre-defined time to completion would have
a higher probability to succeed again at the next test request,
and also assume that the inverse holds. This characteristic is
modeled by using the test failure rate of a group to estimate
the time to the next failure. Each time a developer group starts
executing the test suite of a component, we generate a random
value from an exponential distribution based on the current test
failure rate of the group as an input. The value represents the
expected time to the next failure. If the value is greater than
the pre-defined time required for executing the test suite, we
report the test execution is a success. The test failure rate is

2The test suite execution times vary widely between components. For
example, the default test suite of bzip2 only contains 6 test cases, each
taking less than a second. On the other hand, subversion and BerkeleyDB
have comprehensive test suites that take hours to days.

3http://gcc.gnu.org

adjusted after each test execution. The initial failure rate is set
to 0.1 for all developer groups.4

D. Experimental Results

Given the CDG in Figure 5 and the update history in
Figure 6, there are 87 regression configurations. However,
there was a compatibility fault between OpenSSL and its
user components when testing the regression configurations
generated by 9 component update events. The failures made all
other user components untestable. So in the following results
that compare test execution times across testing strategies, we
used the results obtained by testing components over the 78
remaining configurations. In this section, we are interested in
answering the following research questions:

1) RQ1: How efficient is the coordinated collaborative
testing strategy compared to other strategies?

2) RQ2: Is the coordinated collaborative testing strategy ef-
fective in revealing cross-component compatibility faults?

1) Comparing Cumulative Test Execution Time: In order to
answer RQ1, we compared the cumulative test execution times
required to test components over the regression configurations
by all developers for the different sampling strategies. We
added up the times all the individual groups spent to install
components and run their test suites. Table II shows the
cumulative time (in hours) when different testing strategies
are used. For each strategy, we show multiple results obtained
by using different performance factor distributions with the 5
different standard deviation values.

In Table II, we find that naive testing has a very short cu-
mulative time. This is because it covers the smallest number of
regression configurations. At the other extreme, eager testing
took the longest total time, because developer groups test their
components in isolation, not removing any redundancy. With
the ad-hoc collaborative testing strategy, the cumulative time
is reduced to about 30% that of eager testing, if developers
prefer to maximize the test data reuse (Ad-hoc max reuse).
However, the time savings compared to eager testing is neg-
ligible, if developers prefer to minimize the exposure time of
latent faults (Ad-hoc min exp. time). We see better results when
the coverage-based test case selection is also applied (Ad-hoc
min exp. time, cov-sel), because developers can skip executing
many test cases based on the cross-component code coverage
information. The coordinated collaborative testing strategy
(Coordinated, cov-sel.) performed the best, and reduces the
cumulative time to roughly 9% of the time required for eager
testing. The strategy even outperformed the naive testing
strategy, because it coordinates developers to not spend test
effort unnecessarily. Furthermore, Coordinated, cov-sel. can
help developers find compatibility faults earlier, as we now
describe.

4We also tried other initial failure rate values, and did not observe a sig-
nificant impact on our results, unless the initial failure rate was unreasonably
high for everyone.

TABLE II
CUMULATIVE TIME IN TESTING STRATEGIES (IN HOURS)

Standard Deviation for PF
0.1 0.2 0.3 0.4 0.5

Naive testing 73.1 73.6 73.5 73.7 73.5
Eager testing 593.9 596.6 592.4 592.5 593.3
Ad-hoc max reuse 177.4 178.0 177.3 177.8 177.6
Ad-hoc min exp. time 574.7 577.4 575.3 574.2 575.3
Ad-hoc min exp. time, cov-sel. 127.7 128.1 127.1 126.4 127.5
Coordinated, cov-sel. 54.4 55.1 54.5 55.3 54.6

2) Comparing Maximum Fault Exposure Time: The cumu-
lative test execution time exposes the costs of redundancy in
joint test effort across multiple developer groups, but it is also
important to reduce the time until a compatibility bug can be
discovered. We measured the time maximum fault exposure
time, which is the maximum time until every compatibility
fault introduced by a provider component update is discovered,
assuming the fault can be discovered by testing components
over regression configurations computed at the update. A
smaller value means that faults are discovered earlier.

In Figure 7, we compared the maximum fault exposure
times obtained by running the regression testing process for
the 78 provider component updates, for two testing strategies
that performed very well in the previous experiment: (1) the
third variant of Ad-hoc collaboration (Ad-hoc min exp. time,
cov-sel), and (2) the coordinated collaborative testing strategy
(Coordinated, cov-sel.). The x-axis represents the 78 provider
component update events ordered by the fault exposure time.
As described previously, we considered a regression configura-
tion in this experiment only if we could install all components
contained in the configuration, and also had to be able to
complete running the test suites of the components. The y-
axis shows the estimated maximum fault exposure time (in
hours).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Provider Component Update Events

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Provider Component Update Events

 6

 7

 8

 9

 10

 11

 12

 6

 7

 8

 9

 10

 11

 12
 0 10 20 30 40 50 60 70 80(hours)

Ad-hoc min exp. time cov-sel:

 6

 7

 8

 9

 10

 11

 12

 6

 7

 8

 9

 10

 11

 12
 0 10 20 30 40 50 60 70 80(hours)

Coordinated cov-sel:

Fig. 7. Maximum fault exposure time obtained by running the
regression testing process with the strategies Ad-hoc min exp. time,
cov-sel and Coordinated, cov-sel.

We observe that the fault exposure time is very short for
roughly half the component updates. In fact, for 7 updates

(bzip2 and zlib updates), we did not need to test any user
components, because both strategies use the coverage-based
test case selection and the updated code regions of the com-
ponents were not covered by running the test suites of the
user components. We observe that the maximum fault exposure
times are similar between the strategies, and also that the ad-
hoc strategy shows a little bit better results for a few updates.
This is because multiple developer groups simultaneously test
shared components contained in a regression configuration
with the ad-hoc strategy. In contrast, for the coordinated
testing each component in the configuration is always tested by
only one developer group, as discussed in Section III-B. Test
failures also contribute to making the difference larger, because
Conch has to choose another group to retest the component if
a group fails to complete an assigned testing task.

Overall, the results in Figure 7 and Table II show that
developer groups can reduce redundancy in their test efforts
within a software community by adopting coordinated collab-
orative testing, and the coordination does not delay the testing
processes of individual developers.

3) Analyzing Cross-Component Compatibility Faults: In or-
der to determine whether the coordinated collaborative testing
process can be effective in revealing cross-component com-
patibility faults (RQ2), we describe example faults that could
have been discovered if coordinated collaborative testing had
been performed as part of a continuous integration practice,
which is a core practice in agile software development [15].
We classify the faults captured in the subject components
in our experiments into three categories, and discuss further
in the following paragraphs. Overall, the investigation of the
captured faults shows that Conch can be useful for revealing
various compatibility faults between software components
with dependencies among them.

First, coordinated collaborated testing can be used to dis-
cover cross-component compatibility faults introduced by a
provider component update. One example fault discovered in
our experiments is that XBMC and Python fail to work with
a newer version of OpenSSL (1.0.1e-5). When the OpenSSL
developers released a new version on 12/22/2013, users who
installed the version experienced a fault with the error mes-
sage: “OpenSSL version mismatch. Built against 1000105f,
you have 10001060”. This fault was classified as a critical bug
in the Debian bug tracking system. If coordinated collaborative
testing had been performed before the release, the fault could
have fixed before being released to a user community.

Second, user components can fail due to behavioral changes
in provider components. Provider component developers may
change the behavior of externally visible APIs in a new
version, without noticing that the changes could create compat-
ibility faults with user components. For example, the SQLite
developers changed the progress handler() API code in
version 3.8.4. Although the new version passed all regression
test cases, a test case in a user component test suite (in this

case, the test case test sqlite in the Python test suite) captured
the fault5.

Third, faults in a component can be discovered by user
component developers. Component developers often use the
latest, but maybe unstable, provider component versions (or
builds). If user component developers conduct coordinated
collaborative testing continuously, they can aid provider com-
ponent developers by running the test suite of the provider
components. For example, two test cases, “test urllib2net” and
“test urllibnet”, access the Python document webpage during
execution, but a change in the page made the test cases fail6.
In another example, a Python security update was applied to
the Python core but not applied to all modules of all Python
versions7. With coordinated collaborative testing, several test
cases in the “test ssl” user component were able to find the
faults.

In addition to being able to detect faults, coordinated
collaborative testing via Conch can also help developers by
providing the capability to reproduce the configurations that
contain compatibility faults, as virtual machine images.

E. Threats to Validity

As an empirical study, our study has potential threats to the
validity that practitioners have to consider when interpreting
the presented results and conclusions. The primary threats
to validity in our work are external, including the selection
of subject components, their test suites, and platforms run
upon. We used the subject components from the Ubuntu
distribution, and the components do not necessarilty represent
features of components in other fields such as scientific or
business domains. Also, components are tested using their
test suites distributed together with their source code. A few
subject components contained a small number of test cases
in the test suites of several components. Another threat is the
probablistic models we used to model the performance and the
reliability of developer groups. It is possible that developers
participating in the coordinated collaborative testing show
different distributions.

A threat to internal validity is that components are built and
their test suites are executed based on our understanding of
the components through manuals or other available resources.
A component can show different performance depending on
the way it is configured. For example, different compilers or
optimization levels can be used for building components.

V. RELATED WORK

Distributed software development has become very com-
mon, and many researchers have started investigating and
evaluating such development processes. Ebert et al. studied the
advantages and challenges of globally distributed development
activities in [16]. Ramesh et al. [17] discovered in their
study that agile software development methods like extreme
programming and distributed development can be blended to

5http://bugs.python.org/issue18873
6http://bugs.python.org/issue21115 and https://bugs.python.org/issue20939
7https://www.python.org/dev/peps/pep-0476/

reap the benefits of both. In these studies, group collaboration
and development coordination are considered key factors to
success. Although the two studies are both focusing on col-
laboration within a single organization, similar challenges are
faced to support continuous integration and efficient coordina-
tion across multiple groups and/or organizations.

To support distributed software development, researchers
have emphasized the importance of tools for collaboration
among distributed teams [18], [19]. Bird et al. [19] reported
that globally distributed software development within a single
company may not perform worse (in terms of failures) than
centralized development. In [18], Begel et al. developed tools
based on news-feeds to support developer teams collaborating
with each other, because the teams should be aware of what
other teams are doing for managing risk in their development.
However, these tools are designed to support human develop-
ers for better collaboration. They are not targeted at automatic
testing systems for supporting continuous integration.

There has also been work on methods and tools to sup-
port continuous integration when multiple teams collaborate
on large software projects [20], [21]. Elbaum et al. [20]
designed algorithms to pre-select and prioritize test cases
from test suites to make continuous integration processes
more cost-efficient. Nilsson et al. [21] developed a technique
for visualizing end-to-end testing activities involved in the
continuous integration processes within projects or companies,
so that such activities can be better arranged to support more
efficient integration testing. However, Elbaum et al.’s method
does not apply to the scenario of removing redundant effort
between distributed component developers who collaborate
with each other, and the tool from Nilsson et al. provides only
complementary support for decision making. The tool itself
does not support automatic test scheduling.

An important part of our work is the tools and infrastructure
we provide to support coordinated collaborative testing, as
part of the continuous integration process. There are many
tools used to support continuous integration. Jenkins [22] is
a platform that supports continuous integration and delivery
of software products. If properly configured, it can monitor
the code repository changes of components and trigger testing
activity. It is a good candidate platform that can be used with
our coordinated scheduling process. Autopkgtest [23] is a tool
supported by the Ubuntu community to facilitate compatibility
testing in distributed environments. It enables developers to
provide a set of functional test cases together with a released
package. Other developers can easily install the packages,
and execute the provided test cases for compatibility testing.
However, this process is neither automatic nor coordinated. .

VI. CONCLUSIONS

As reuse of third-party components has become a common
theme in today’s software development processes and compo-
nent developers release new versions frequently, it is important
to discover cross-component compatibility faults early in the
development process to ensure the quality of overall systems
as well as the shared components.

In this paper, we have presented a coordinated collaborative
regression testing strategy that makes use of a scheduling
algorithm to distribute testing workload across multiple devel-
oper groups based on both the capability and the reliability of
the different developer groups. Through a comparative study
against naive testing, eager testing, and ad-hoc collaborative
testing, we have demonstrated that coordinated collaborative
regression testing can help component developers quickly
discover compatibility faults while also reducing redundancy
in the total test effort expended by the developer groups. We
also showed examples of the kinds of compatibility faults that
can be exposed by adopting coordinated collaborative testing
as part of a continuous integration process.

In the future, we plan to apply coordinated testing to a set
of components in the high-performance computing domain,
and also to improve the test scheduling algorithm to utilize
end-user computing resources in addition to the resources at
developer sites, to support more comprehensive testing and
improve overall software quality.

ACKNOWLEDGMENTS

This work was partially supported by the US National
Science Foundation (CCF-0811284, CNS-1205 501, CNS-
0855055), the National Research Foundation of Korea (NRF-
2013010695), and the MSIP of Korea (IITP-2015-R0346-15-
1007).

REFERENCES

[1] F. Erich, C. Amrit, and M. Daneva, “A mapping study on
cooperation between information system development and operations,”
in Product-Focused Software Process Improvement, ser. Lecture Notes
in Computer Science, A. Jedlitschka, P. Kuvaja, M. Kuhrmann,
T. Mnnist, J. Mnch, and M. Raatikainen, Eds. Springer International
Publishing, 2014, vol. 8892, pp. 277–280. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-13835-0 21

[2] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[3] C. Artho, K. Suzaki, R. di Cosmo, R. Treinen, and S. Zacchiroli, “Why
do software packages conflict?” in Proceedings of the 9th Working
Conference on Mining Software Repositories (MSR 2012), Zurich,
Switzerland, 2012, pp. 141–150.

[4] C. Artho, K. Suzaki, R. di Cosmo, and S. Zacchiroli, “Sources of inter-
package conflicts in debian,” in Proceedings of the Workshop on Logics
for Component Configuration (LoCoCo 2011), Perugia, Italy, 2011, short
presentation.

[5] I. Yoon, A. Sussman, A. Memon, and A. Porter, “Effective and
scalable software compatibility testing,” in Proceedings of the 2008
International Symposium on Software Testing and Analysis (ISSTA
2008), New York, NY, USA, 2008, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1390630.1390640

[6] ——, “Towards incremental component compatibility testing,” in Pro-
ceedings of 14th International ACM SIGSOFT Symposium on Compo-
nent Based Software Engineering (CBSE-2011), 2011, pp. 119–128.

[7] T. Long, I. Yoon, A. Memon, A. Porter, and A. Sussman,
“Enabling collaborative testing across shared software components,”
in Proceedings of the 17th International ACM SIGSOFT Symposium
on Component-based Software Engineering, ser. CBSE ’14. New
York, NY, USA: ACM, 2014, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/2602458.2602468

[8] T. Long, I. Yoon, A. Porter, A. Sussman, and A. Memon, “Overlap and
synergy in testing software components across loosely-coupled com-
munities,” in Proceedings of the 23rd IEEE International Symposium
on Software Reliability Engineering (ISSRE 2012). Dallas, TX, USA:
IEEE Computer Society, 2012.

[9] T. Long, I. Yoon, A. Sussman, A. Porter, and A. Memon, “Scalable sys-
tem environment caching and sharing for distributed virtual machines,”
in Proceedings of the 2014 IEEE 28th International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, ser.
IPDPSW ’14. Phoenix, Arizona, USA: IEEE Computer Society, 2014.

[10] “Web Services Description Language (WSDL) 1.1,”
http://www.w3.org/TR/wsdl, 2001.

[11] “SOAP Version 1.2,” http://www.w3.org/TR/soap12-part1/, 2007.
[12] “Bazaar Version Control System,” http://bazaar.canonical.com/en/,

2015.
[13] “Apache Subversion: Enterprise-class centralized version control for the

masses,” http://subversion.apache.org/, 2015.
[14] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-

source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[15] S. Stolberg, “Enabling agile testing through continuous integration,” in
Proceedings of the 2009 Agile Conference, Aug 2009, pp. 369–374.

[16] C. Ebert and P. De Neve, “Surviving global software development,”
IEEE Software, vol. 18, no. 2, pp. 62–69, Mar. 2001. [Online].
Available: http://dx.doi.org/10.1109/52.914748

[17] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Communications of the ACM,
vol. 49, no. 10, pp. 41–46, Oct. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1164394.1164418

[18] A. Begel and T. Zimmermann, “Keeping up with your friends: Function
foo, library bar.dll, and work item 24,” in Proceedings of the First

Workshop on Web2.0 for Software Engineering, May 2010.

[19] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? an empirical case
study of windows vista,” in Proceedings of the 31st International
Conference on Software Engineering (ICSE), 2009, pp. 518–528.
[Online]. Available: dx.doi.org/10.1109/ICSE.2009.5070550

[20] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 235–245. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635910

[21] A. Nilsson, J. Bosch, and C. Berger, “Visualizing testing activities
to support continuous integration: A multiple case study,” in Agile
Processes in Software Engineering and Extreme Programming, ser.
Lecture Notes in Business Information Processing, G. Cantone
and M. Marchesi, Eds. Springer International Publishing, 2014,
vol. 179, pp. 171–186. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-06862-6 12

[22] “Jenkins: an extendable open source continuous integration server,”
http://jenkins-ci.org/, 2013.

[23] “Automatic testing of Debian-format packages,”
http://launchpad.net/autopkgtest, 2015.

